
SPACES OF CONTINUOUS LINEAR MAPPINGS

NORMED LINEAR SPACE STRUCTURE

Proposition. An n-dimensional Euclidean space (Unitary space)
(i) is complete and
(ii) has the property that a subset is compact if and only if it is closed and

bounded.
Corollary. Every finite dimensional normed linear space is complete.
Corollary. Every linear mapping of a finite dimensional normed linear space into
a normed linear space is continuous.

OPERATOR ALGEBRAS

Given normed linear spaces (𝑋, ‖. ‖) and (𝑌, ‖. ‖′) our other special case arises
when we take the range space (𝑌, ‖. ‖′) to be the same as the domain space
(𝑋, ‖. ‖). We then have the normed linear space of continuous linear operators
on (𝑋, ‖. ‖).
Definitions. Given an algebra 𝐴 over ℂ(𝑜𝑟 ℝ), a norm ‖. ‖ on 𝐴 is said to be an
𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝑛𝑜𝑟𝑚 if it satisfies the additional norm property:

For all 𝑥, 𝑦 ∈ 𝐴, ‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖, (the submultiplicative inequality).
The pair (𝐴, ‖. ‖) İs called a normed algebra. 𝐴 normed algebra which is
complete as a normed linear space is called a complete normed algebra( or a
Banach algebra).
Different norms can be assigned to the same algebra 𝐴 giving rise to different
normed algebras.
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FINITE DIMENSIONAL NORMED LINEAR SPACES

Definition. Given a normed linear space (𝑋, ‖. ‖) and a linear subspace Y of X, it
is clear that the restriction of the norm ‖. ‖ to Y is also a norm for Y. The
restriction is denoted . 𝑌 and (Y, . 𝑌) is a 𝑛𝑜𝑟𝑚𝑒𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 of
(𝑋, ‖. ‖).

INNER PRODUCT SPACES

Definition. Given a linear space 𝑋 over ℂ, a mapping ( . , . ): 𝑋 × 𝑋 → ℂ is an 
inner product on 𝑋 if it satisfies the following properties: 
For all 𝑥, 𝑦, 𝑧 ∈ 𝑋
(i) (𝑥 + 𝑦, 𝑧) = (𝑥, 𝑧) + (𝑦, 𝑧) 
(ii) (𝜆𝑥, 𝑦) = 𝜆(𝑥, 𝑦) for all 𝜆 ∈ ℂ

(iii) (𝑦, 𝑥) = 𝑥, 𝑦
(iv) (𝑥, 𝑥) ≥ 0 
(v) (𝑥, 𝑥) = 0 if and only if 𝑥 = 0. 
A linear space 𝑋 with an inner product ( . , . ) is called an 𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑝𝑎𝑐𝑒
(or a 𝑝𝑟𝑒 − 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑠𝑝𝑎𝑐𝑒) and is sometimes denoted formally as a pair
(𝑋, ( . , . )).
Definition. An inner product space which is complete as a normed linear space is 
called a 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑠𝑝𝑎𝑐𝑒. 
Example. Unitary n-space (Euclidean n-space) is an inner product space with
inner product (. , . ) defined on ℂ𝑛(𝑜𝑟 ℝ𝑛) 
for 𝑥 ≡ (𝜆1, 𝜆2,…, 𝜆𝑛,… ) and 𝑦 ≡ (𝜇1, 𝜇2, … , 𝜇𝑛 ) 𝑏𝑦

(𝑥, 𝑦) = σ𝑘=1
𝑛 𝜆𝑘𝜇𝑘.

It is quite clear that all the inner product properties (i)-(v) are satisfied. The
norm generated by this inner product is the Unitary (Euclidean) norm, 

𝑥 2 = σ𝑘=1
𝑛 𝜆𝑘

2 ⋅
We deduce from the inner product structure that the Cauchy-Schwarz inequality
holds and applying this inequality to (| 𝜆1|,| 𝜆2|, … , | 𝜆𝑛|) and
(| 𝜇1|,| 𝜇2 |, … , | 𝜇𝑛 |) 𝜖 ℝ𝑛, 
we have for (𝜆1, 𝜆2,…., 𝜆𝑛, … ) and (𝜇1, 𝜇2 , … , 𝜇𝑛 ) 𝜖 ℂ𝑛 that

෌
𝑘=1

𝑛
|𝜆𝑘𝜇𝑘| = σ𝑘=1

𝑛 |𝜆𝑘||𝜇𝑘|

≤ σ𝑘=1
𝑛 𝜆𝑘

2 σ𝑘=1
𝑛 𝜇𝑘

2 .
Definition. Given an inner product space 𝑋, for 𝑥, 𝑦 𝜖 𝑋 we say that 𝑥 is 
orthogonal to 𝑦 if (𝑥, 𝑦) = 0 and we write 𝑥 ⊥ 𝑦 . Given subset 𝑀 of 𝑋 we say 
that 𝑥 is 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 to 𝑀 if 𝑥 is orthogonal to every element of 𝑀 and we write
𝑥 ⊥ 𝑀 .

Given normed linear spaces (𝑋, ‖. ‖) and (𝑌, ‖. ‖′) our first special case arises
when we take the range space 𝑌 as the scalar field of the domain space 𝑋. We
then have the normed linear space of continuous linear functionals on (𝑋, ‖. ‖).
Definitions.
(i) Given a linear space 𝑋 over ℂ (𝑜𝑟 ℝ), the algebraic dual (or algebraic
conjugate) space is the linear space ℒ(𝑋, ℂ)(or ℒ(𝑋, ℝ)), usually denoted by 𝑋#.
(ii) Given a normed linear space (𝑋, ‖. ‖) over ℂ (𝑜𝑟 ℝ), the dual (or conjugate)
space is the normed linear space (𝛽(𝑋, ℂ), ‖.‖) (or (𝛽(𝑋, ℝ), ‖. ‖)) usually denoted
by 𝑋, . ∗. When we are thinking of the dual as a linear space we denote it by
𝑋∗ and as a normed linear space with its norm, by (𝑋∗ , ‖. ‖). The norm on 𝑋∗ is
given by

‖𝑓‖ = sup{|𝑓(𝑥)|: ‖𝑥‖ ≤ 1}
Corollary. Whether a normed linear space (𝑋, ‖. ‖) is complete or not, its dual
space (X∗, ‖. ‖) is always complete.

DUAL SPACES

THE SHAPE OF THE DUAL

Given a n-dimensional linear space 𝑋𝑛 over ℂ(𝑜𝑟 ℝ) with basis 𝑒1, 𝑒2, … , 𝑒𝑛
that the algebraic dual 𝑋𝑛

# is also a linear space with basis 𝑓1, 𝑓2, … , 𝑓𝑛 dual to
𝑒1, 𝑒2, … , 𝑒𝑛 where

𝑓𝑘 𝑒𝑗 = 1 when 𝑗 = 𝑘

= 0 𝑗 ≠ 𝑘

Furthermore, since 𝑓 = σ𝑘=1
𝑛 𝑓 𝑒𝑘 𝑓𝑘 ,𝑋𝑛

# is isomorphic to ℂ𝑛 (𝑜𝑟 ℝ𝑛 )
under the mapping

𝑓 ↦ 𝑓 𝑒1 , 𝑓 𝑒2 , … , 𝑓 𝑙𝑛 ⋅

and every linear functional 𝑓 on 𝑋𝑛 is of the form

𝑓 𝑥 = σ𝑘=1
𝑛 𝜆𝑘𝑓 𝑒𝑘 where 𝑥 ≡ σ𝑘=1

𝑛 𝜆𝑘𝑒𝑘 .
Being an isomorphism onto ℂ𝑛 implies that every linear functional 𝑓 on 𝑋𝑛 has
the form

𝑓 𝑥 = σ𝑘=1
𝑛 𝜆𝑘 ത𝑎𝑘 for some 𝑎1, 𝑎2,…, 𝑎𝑛 ∈ ℂ𝑛 (a1,a2,….,an) E ℂ𝑛

where 𝑥 ≡ σ𝑘=1
𝑛 𝜆𝑘𝑒𝑘 .

NORMED SPACE

Definition. Given a linear space X over ℂ (or ℝ.), a mapping
‖. ‖: X → ℝ is a norm for X if it satisfies the following properties:
For all 𝑥 𝜖 X,
(i) ‖𝑥‖ ≥ 0,
(ii) ‖𝑥‖ = 0 if and only if 𝑥 = 0,
(iii) ‖𝜆𝑥‖ = |𝜆|‖𝑥‖ for all scalar 𝜆,
and for all x, y ∈ X,

(iv) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖.

SPACES OF CONTINUOUS LINEAR MAPPINGS

Definitions.
(i) Given linear spaces 𝑋 and 𝑌 over the same scalar field, the set ℒ(𝑋, 𝑌) of
linear mappings of 𝑋 into 𝑌 is a linear space under pointwise definition of
addition and multiplication by a scalar; that is, for 𝑇, 𝑆 ∈ ℒ(𝑋, 𝑌) ,

𝑇 + 𝑆:𝑋 → 𝑌 is defined by (𝑇 + 𝑆)(𝑥) = 𝑇𝑥 + 𝑆𝑥
and 𝑎𝑇:𝑋 → 𝑌 is defined by (𝑎𝑇)(𝑥) = 𝑎𝑇𝑥.
There is no difficulty in verifying that 𝑇 + 𝑆 and 𝑎𝑇 ∈ ℒ(𝑋, 𝑌) and that the linear
space properties hold.
(ii) Given normed linear spaces (𝑋, ‖. ‖) and (𝑌, ‖. ‖ ′) over the same scalar

field, the set 𝛽(𝑋, 𝑌) of continuous linear mappings of 𝑋 into 𝑌 is a linear
subspace of ℒ(𝑋, 𝑌). Closure under the linear operations follows from the
closure of continuity under these operations.

These spaces are in fact generalisations of the finite dimensional case.
Example. When 𝑋 = ℝ𝑛(𝑜𝑟 ℂ𝑛) and 𝑌 = ℝ𝑚(𝑜𝑟 ℂ𝑚) then 𝛽(𝑋, 𝑌) is isomorphic
to the linear space 𝑀𝑚𝑥𝑛 of 𝑚 × 𝑛 matrices with entries from ℝ(𝑜𝑟 ℂ).
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